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Observations of flow in furrowed channels support the calculations of part 1 (Sobey 
1980). If the mainstream flow is steady there is a critical Reynolds number below 
which separation does not occur. Above that Reynolds number vortices form and fill 
the furrow. When the mainstream is oscillatory, the flow may separate during the 
acceleration to form strong vortices. During the deceleration the vortices grow to fill 
the furrow and channel. As the mainstream reverses the vortices are ejected from the 
fiirrows as the fluid flows between the wall and the vortex. Photographs show that this 
pattern occurs for sinusoidally varying walls, furrows that are arcs of circles and 
rectangular hollows. 

1. Introduction 
In part 1 (Sobey 1980) numerical solutions to the Navier-Stokes equations of 

motion have shown the complex structure of steady and unsteady flow through a 
two-dimensional symmetrically furrowed channel. The numerical solutions have shown 
that for steady flow there is a critical Reynolds number below which separation does 
not occur. As the Reynolds number increases above the critical value a vortex is set 
up in the furrows of the channel wali. The vortex rapidly grows with increasing 
Reynolds number until it  is centred in the downstream part of the furrow and fills the 
furrow. In  unsteady flow the situation is much more complex. There are two para- 
meters which govern the flow: (1) the pulsatile Reynolds number, 

a2 = h2Q/v, 

where h is the channel half-gap, R the frequency of oscillation and v the kinematic 
viscosity; and (2) the Strouhal number, 

St = m/u,  
where U is the peak velocity obtained by assuming a flat velocity profile. At small 
Strouhal numbers (of the order 10-2) the flow develops in a quasi-steady manner 
during the acceleration and, provided the peak instantaneous Reynolds number 

Re = a2/St 

is greater than the critical Reynolds number for steady flow separation, the oscillatory 
flow will separate causing a vortex to form in the furrow. A major feature of the 
numerical solution concerns the development of the vortex during the deceleration. 
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FIGURE 1. Schematic layout of experimental rigs. 

Sobey (1980) predicts that the vortex will expand during a deceleration, in contradic 
tion to quasi-steady ideas. The expansion is followed by ejection of the vortex fronr 
the furrow as the reversing fluid flows between the vortex and the wall. In  this papei 
we support the numerical results by demonstrating visually the process of vortex 
formation, growth and subsequent ejection from a furrow. The observations were 
made in small tunnels using polystyrene particles to show the flow paths. 

2. Experimental details 
Two small rigs were used to observe flow through furrowed channels. A schematic 

diagram is shown in figure 1. The test sections used were sinusoidally shaped walls, 
furrows that were arcs of circles and rectangular furrows. The test sections were 
machined from Perspex. As discussed in part 1, the particular application we are 
interested in is the high efficiency membrane oxygenator of Bellhouse et al. (1973), 
where the furrows are arcs of circles and the scale is very small, channel half-gap 
0.025 cm, hollow chord 0.2 cm and hollow depth 0.05 cm. Experimentally it is simpler 
to scale the geometry up but in unsteady flow this procedure is not as useful as in 
steady flow. There are two governing parameters, the Reynolds number and the 
Strouhal number, and in order to have similar flows both parameters must be kept 
constant. If the scale is increased the velocity scale must decrease to preserve the 
Reynolds number and then the frequency must decrease by the square of the scale 
factor to keep the Strouhal number constant. In  order to avoid very small operating 
frequencies we have used a scale of approximately twice that given for the oxygenator. 
To observe flows on this small scale we have used polystyrene particles of diameter 
15-125pm and have accepted that some errors will be introduced by using 
particles with diameters between & and & the minimum channel gap. 

The use of such relatively large particles has allowed a cheap light source to be used, 
a 150 W slide projector with a quartz halogen bulb. Still photographs were taken 
using Kodak 2475 recording film and exposure times down to s at  f 3.5. Synchroni- 
zation of the photographs with the piston motion was achieved by using a camera, 
with an electronic shutter (Nikon F2 body with MDZ motor drive and micro-Nikkor 
55 mm lens). There was a constant delay of 75 Ins between the trigger pulse and the 
camera firing. On one rig both the frequency and displacement of the piston could be 
continuously set and on the other rig only the frequency. However on the latter rig the 
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FIGURE 2. Traces obtained by subtracting the output of two light-sensitive transistors to measure 
camera blind movement (a) & second, (a) -&, second. 

piston motion more closely resembled a sine wave than on the other. The camera 
could be set to fire at 10 ms points during a cycle with an accuracy of 1 ,us. There are 
many difficulties in still photography of continuous events. One difficulty is the ex- 
posure of one side of the film before the other side as the shutter blinds move acrom the 
film. To demonstrate this difficulty we used two light-sensitive transistors placed in 
the position of the film behind the exposure window. The output from the two trans- 
iSt~rs was subtracted and typical traces are shown in figure 2. It can be seen that the 
blind takes approximately s to traverse the film. At +jK s the whole film is exposed 
for only a few milliseconds (figure 2a) whilst at & s the situation is somewhat better, 
the whole film is exposed for nearly 10 ms (figure 2 b ) .  The time of exposure was also 
measured and we found that the camera was very reliable, giving exposure times of 
14.6 ms at & s, 12.5 ms at & s and 8.5 ms at & s. Knowing these times and 
by measuring the particle paths on the film it is hoped to obtain velocity profiles a t  a 
h b r  stage. 

We have indicated that there will be several sources of error at our work: 

(1) the relatively large particle sizes, 
(2) deviation of the piston stroke from sinusoidal motion, 
(3) inaccuracies introduced by the nature of still photography. 

It is difficult to quantify these errors in unsteady motion. We have attempted to 
minimize them and as we are presenting qualitative results we feel justified in ne- 
glecting the magnitude of these errors at this stage. 

3. Steady flow 
In part 1 it was shown that there is a critical Reynolds number below which steady 

flow does not separate. Define the hollow length to be Lh and depth Dh, where h is the 
ohannel half-gap. For a sinusoidal hollow of length L = 8 and depth D = 2 the critical 
Reynolds number is near 5. In  figure 3 (plate 1) we show photographs of steady flow 
for furrows of non-dimensional length L = 15 and depth D = 4.  Using $5.2 of part 1 
we can deduce that the effect of increasing the scale of the furrows to L = 15 and D = 4 
kto reduce slightly the critical Reynolds number. In  the photographs the mainstream 
iS moving from right to left. Figure 3 (a) shows that a t  Re = 5.3 there is a considerable 
stagnant region in the upstream part of the furrow. It is difficult to determine whether 
aepration has occurred because the particles move very slowly and are not displaced 
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a great distance during the time of the photograph. At Reynolds number of 8-9 
(figure 3 b)  the stagnant region has increased in size and a slowly rotating vortex was 
visible. At a Reynolds number of 15.5 (figure 3c) the characteristic vortex motion can 
be seen in the photograph. In  figure 3 ( d )  the flow is shown a t  Re = 28.9. The vortex 
fills the furrow and during the exposure of the photograph particles in the furrow move 
a considerable distance. The features shown in these photographs are consistent with 
the numerical studies of part 1, in particular the occurrence of separation near Re = 5 
and the rapid growth of the vortex to fill the furrow as the Reynolds number increases 
to near 30. 

4. Unsteady flow 
In  the calculations presented in part 1 there were several major points that we shall 

reiterate here before discussing the photographs shown in figures 4-9 (plates 2-7). 
Firstly it was shown that during a deceleration the vortex would grow in size although 
not in strength. Even though the flow appeared to behave during the acceleration in 
a quasi-steady manner the behaviour during the deceleration was in complete contra- 
diction to quasi-steady theory. Secondly i t  was shown in part 1 that the geometric 
parameters of most importance were the hollow length and depth. Details of the wall 
geometry, such as the presence of corners, seemed to have little influence on the flow 
patterns calculated in the furrowed channels. Lastly, using the definitions of part 1, if 
the time of separation is taken as a global parameter, then in terms of the pulsatile 
Reynolds number and the Strouhal number a singularity develops near the origin. 
The angle the singularity makes with the origin corresponds to the critical Reynolds 
number for separation of steady flow through a furrowed channel. It is important to 
understand that the structure of the solutions presented in part 1 should be true for 
oscillatory flow through furrows of arbitrary geometry. 

In  figure 4 (plate 2) we show the development of the vortex in a sinusoidally varying 
channel as the flow decelerates. The Reynolds number is 32.5 and it can be seen that 
late in the half-cycle (figure 4 a )  the vortex remains entirely within the furrow. At a 
non-dimensional time, t = 0.925 (figure 4b),  the vortex has bulgedinto the mainstream. 
One effect of this is to keep the velocity in the centre of the mainstream nearly con- 
stant as the flow decelerates. At t = 0.956 (figure 4c)  the vortex has continued to 
expand and occupies much of the mainstream. In  figure 4 (d) ,  taken at t = 0.994, the 
vortex has grown to fill the furrow and the channel. Fluid is flowing back along the 
wall and forward in the centre of the channel. 

In  figure 5 (plate 3) we show the movement of the vortex after the flow has reversed. 
At t = 0.004 the vortex fills the furrow and the channel and as the flow reverses the fluid 
flows between the vortex and the wall, displacing the vortex into the mainstream. As 
the flow accelerates in the opposite direction fluid from the vortex is gathered into the 
mainstream reducing the size of the vortex (figure 5b-e). Continued acceleration 
removes the vortex altogether and a t  t = 0.12 the fluid is flowing through the furrow 
mainly following the wall shape. It can be seen that the ejection of the vortex from the 
furrow and the subsequent elimination of the displaced vortex in the mainstream is a 
very rapid process that occurs when the mainstream flow reverses direction. 
To demonstrate that the flow structure remains unaltered with changing geometry 

we show in figures 6-9 photographs taken in widely varying situations. In  figure 6 
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R a m  10. Observations of the onset of vortex formation in a sinusoidally furrowed channel. 
= 0.018, A = 0.05675, [7 = 0.07375, V = 0.09875, = 0.09575 (half-scale model) 

A = 0.0985 (half-scale model). - calculated line dividing those flows that separate in the 
acceleration (above the line) from those that separate in the deceleration. 

(plate 4) the furrows are semicircles. As the flow reverses the vortex is displaced into 
the mainstream (figure 6a)  and eventually separation occurs in the upstream part 
of the furrow (figure 6 b ) .  The old pair of vortices still remain in the centre of the channel, 
although of greatly diminished size. Further acceleration of the mainstream increases 
the aize of the separated region (figure 6 c )  and at peak flow the vortex fills the furrow 
(figure 64. As the flow decelerates the vortex bulges into the mainstream (figure 6 e )  
and when the flow finally comes to rest the vortex is left rotating in the hollow and 
mainstreem (figure 6 f ) .  

If we consider a rectangular hollow the situation remains unaltered. In  order to 
etress this we show the flow in a one-sided furrow ; the upper wall in the photographs 
is a flat wall. In figure 7 (a)  (plate 5) the vortex from the previous half-cycle can be seen 
in the hollow. As the fluid begins to move it is clear from figure 7 ( b )  that the old vortex 
haa been displaced to a position near the upper wall, the flow has separated from the 
upstream wall and the mainstream flows between the vortices. In  figures 7 ( c )  and 
(d) the continued growth of the new vortex is shown together with the final elimination 
of the old vortex. During the cycle the vortex moves into the downstream part of 
the hollow and the fluid in the upstream part becomes stagnant (figure 7 e ,  f ) .  As the 
mainstream decelerates to rest the vortex increases in size (figure 7 g )  and finally 
occupies the channel and the hollow (figure 7 h ) .  An increase in the hollow depth has 
little effect on the structure of the flow cycle. In figures 8 (a)  and 9 (a) (plates 6 and 7 )  
the vortex from the previous half-cycle can be seen rotating in the hollow, filling the 
hollow and the mainstream. As the fluid is accelerated the vortex is displaced from the 
hollow. The new vortex moves across the hollow and eventually grows in size as the 
mainstream decelerates. This pattern is evident in both figures 8 and 9. 

We have observed visually in sinusoidal furrows the onset of vortex motion on a 
p / n o  basis. In figure 10 we show the results for varying viscosity and hollow scale. 
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A consistent pattern emerges, vortices only being observed if the peak Reynolds 
number is sufficiently great. We also show the calculated line (from part 1) that divides 
those flows which separate in accelerating flow from those that separate in decelerating 
flow. These observations support the conclusions of part 1 that the flow develops in a 
quasi-steady manner during the acceleration phase and that vortices will be observed 
only if the peak Reynolds number is greater than some critical value, the critical 
value being that Reynolds number that would cause a steady flow to separate. This 
is, of course, a valuable design criterion as well as a link in our picture of the structure 
of unsteady fluid flowa. 

We are grateful to F. H. Bellhouse, M. Stevenson and J. Mooney for technical 
assistance, and to R. D. Hill for design and construction of the piston/camera syn- 
chronization unit. This work is supported by the Science Research Council. K. D. S. 
gratefully acknowledges receipt of a Thouron Scholarship from the University of 
Pennsylvania. 
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FIGURE 3. Steady flow through a sinusoidal furrow. (a )  Re = 5 .3 ,  ( b )  Re = 8.9, ( c )  Re = 15.5, 
( d )  Re = 28.9. Hollow dimensions h = 0.04 em, L = 15, D = 4. 
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FIGURE 4. Growth of vortices during final stages of deceleration. (a) t = 0.894, (b) t = 0.925, 
( c )  t = 0.956, (d) t = 0.994. Pulsatile Reynolds number = 0.156, Strouhal number = 0.0048. 
Furrow dimensions as in figure 3. 
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FIGURE 5. Elimination of vortices after ejection from furrows. (a) t = 0-004, (b)  t = 0.015, 
(c )  t = 0.030, (d) t = 0.045, (e) t = 0.075, (f) t = 0.12. Pulsatile Reynolds number = 0.375 and 
Strouhal number = 0.0048. Furrow dimensions as in figure 3. 
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FIGURE 6. Flow cycle for semicircular furrow. (a )  t = 0.01, ( b )  t = 0.18, (c) t = 0.23, (d )  t = 0.35, 
(e)  1 = 0.48, (f) t = 0.60. Pulsatile Reynolds number = 0.25, Strouhal number 0.003. Hollow 
dimensions 71 = 0.1 em, L = 4 and D = 2 .  
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R a m  7. Flow cycle for rectangular hollow. (a)  t = 0.08; ( b )  t = 0.12; ( c )  t = 0.15; (a) t = 0.19; 
(e) t = 0.23; (f) t = 0.3G; (9)  t = 0.44; (h) t = 0.53. Pulsatile Reynolds number = 0.21, Xtrouhal 
number = 0.0031. Hollow dimensions h = 0.05 cm, L = 10, D = 4. 
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FIGURE 8. Flow cycle for rectangular hollow. (a) t = 0.12; (b)  t = 0.13, (c) t = 0.19; (d )  t = 0.23; 
( e )  t = 0.25; (f) t = 0.48. Pulsatile Reynolds number = 0.21, Strouhal number = 0.0031. 
Hollow dimensions h = 0.05 em, L = 10, D = 6. 
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WIGURE 9. Flow cycle for rectangular hollow. (a) t = 0.08; ( b )  t = 0.13; (c) t = 0.19; (d) t = 0.4; 
( e )  t = 0.44; (f) t = 0.57. Pulsatile Reynolds number 0.21. Strouhal number 0.0031. Hollow 
dimensions h = 0.05 cm, L = 10, D = 8. 
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